Armory 201 — Conflict Checking
Using the Complex Search Form

Presented by
Yehuda ben Moshe
Elmet Herald

1/12/2015

Prerequisites

* Athorough understanding of the conflict rules
and how to conflict check with the Ordinary
Index

* Students are encouraged to review Armory
103 and 104, as well as SENA A5 prior to this
class

Review

* Remember to always look for SCs first, before
counting DCs!
* Any one SC will clear the device
—Type
— Number
— Arrangement
— Posture/Orientation
— (Adding/removing a primary charge group)




Review

* Any two DCs will clear the device
— Field
— Adding/removing a charge group
— Tincture within a charge group
— Type
— Number
— Arrangement
— Posture/Orientation

1/12/2015

Where

» All SCA-registered armory (and names) are
located in the database known as the Ordinary
and Armorial

* oanda.sca.org

* Different ways to search — complex search
form

Warning

* Do NOT use the blazon pattern search for
conflict checking. You WILL miss conflicts that
way
— Simple text search
— Consider conflict checking a “dog”

— Need to also check for “talbot”, “wolf”,
“greyhound”, “fox”, etc.

* Only use Ordinary index and Complex Search

form for conflict checking




Background

* Complex Search Form is actually just a way to run
multiple searches at once

* While you can do different types of searches, we
will be using only the Armory Description type of
search

* When properly used, the complex search form
will give the exact same results as the Ordinary
Index — you'll get all actual conflicts and eliminate
all non-conflicts

— But the Complex Form is faster — less to hand check

1/12/2015

Background

* Every entry in the O and A is coded using a
system of armory descriptions

* An armory description is comprised of a
category and zero or more features

* Example: CAT:3:primary:rampant to dexter:or
— CAT is the category
— 3, primary, rampant to dexter, or are all features

» Categories are all-capital letters, features are
all lower case

Background

* NOTE: not all entries in the O and A are fully

coded

— All have categories, but not all features are fully
entered

— More recent registrations are more likely to be fully
coded

— Older registrations are being re-coded by Morsulus
Herald

— Items that are not fully coded will show up
unexpectedly, but you will not miss a conflict because
of them




Background

* To see examples of coding, perform a Blazon

Pattern Search and set “Armory descriptions”
to “enabled”

— Remember: Don’t conflict check with the Blazon
Pattern Search

1/12/2015

my.cat

* All codes are defined in a file located on the O
and A site:

— http://oanda.sca.org/my.cat

— Some computers have trouble displaying this file — if

so, save it and rename it as a .txt file, then openin a
text editor

* This is an automatically generated file that shows
all categories and features, as well as their
relationships to eachother

* It does not, however, show how they are used

my.cat

* The file has three main sections
— Features
— Categories

— Cross-references

* We will look at them in reverse order



http://oanda.sca.org/my.cat
http://oanda.sca.org/my.cat

1/12/2015

my.cat

* Cross-references

— The bottom part of the file contains all of the
cross-references

— These are the same as the “see X” entries in the
Ordinary Index

— One way to find codes is to do a search in the file
(Ctrl-F on most PCs) and look for your text

my.cat

* Cross-references
— Example: suppose we have a device with a yak on
it.

* Perform a search for “yak” and we will find the
following: “yak — see beast, bull”

* This is a cross-reference

* We should now search for “beast, bull” to find the
actual category

my.cat

* Categories

— Categories show how the Armory Description is
coded

— Remember categories are always capitalized

— Example: continuing from above
* Searching for “beast, bull” finds the following line:
* “beast, bull| BEAST-BULL AND BISON”

* This tells us that “BEAST-BULL AND BISON” is the
coding for a Yak (and other bull-type creatures)




my.cat

* Categories
— A category will always have a lower case “plain
English” term, followed by a pipe symbol (“|”)
followed by the all-capital category code

1/12/2015

my.cat

* Features
— Features are organized into feature groups

* Feature groups don’t appear anywhere other than in
my.cat

* They are used internally by the system

* Features are compared only to other features in the
same group

— For example, the features in the feature group “posture”, such

as rampant, statant, etc. will only match other features in the
“posture” group

my.cat

* Features
— Features always start with a pipe character, then
the feature group, then a colon, then the feature
. |posture:passant
— Features can also be included in other features
* | posture:passant to dexter<passant

* This means that “passant” will also match “passant to
dexter”




my.cat

* Features

— These are not subsets
* |number:4<4 or fewer<4 or more<2 or more

* This means that “2 or more”, “4 or more”, “4 or fewer”
will all match “4”

* It does not mean that “4 or more” will match “2 or
more”
— They only describe what will match to the left
most item

1/12/2015

Matching

* The complex search form tries to match each
line of the search to the description of the
registered armory

* The system doesn’t actually look for a match —
it looks for a mismatch

— This is very important to understand

Matching

* Consider “Gules, a lion Or” as a registered
item
* The lion in this entry might be encoded as:
— CAT:or:1:spa:rampant to dexter
* CAT is the category
* “or” is a feature in the “tincture” group
“1” is a feature in the “number” group

“spa” (single primary alone on the field) is a feature in
the “group” group

“rampant to dexter” is a feature in the “posture” group




Matching

* Suppose we are trying to conflict check “Vert, a
lion argent”

* We might try the following searches
— CAT:1
* The system first checks that the category is present

It then notices that the feature is “1” and that that feature is
in the “number” group

Next, it checks that the registered item has a feature in the
“number” group — which it does

Finally, it checks if the features match — they do, so this
search is a match

1/12/2015

Matching

* Suppose we are trying to conflict check “Vert, a
lion argent”

* We might try the following searches

— CAT:argent
The system first checks that the category is present
It then notices that the feature is “argent” and that that
feature is in the “tincture” group
Next, it checks that the registered item has a feature in the
“tincture” group — which it does

Finally, it checks if the features match —they don'’t, so it’s a
mismatch

Matching

* Suppose we are trying to conflict check “Vert, a
lion argent”

* Suppose we make an error, and misspell argent
— CAT:arget
* The system first checks that the category is present

It then notices that the feature is “arget” but that this
doesn’t belong to any feature group

« Since it is not part of a feature group, it is ignored

+ Since the system looks for mismatches, not matches, this
returns a match




Matching

* Suppose we are trying to conflict check “Vert, a
lion argent”

* Suppose we make an error, and use a totally
wrong (but valid) feature

— CAT:naiant

The system first checks that the category is present

It then notices that the feature is “naiant”, which belongs to
the “fish_posture” group

Next, it checks that the registered item has a feature in the
“fish_posture” group — but it doesn’t

That group isn’t present, so this feature is ignored.

Since the system looks for mismatches, not matches, this
returns a match

1/12/2015

Matching

Suppose we are trying to conflict check “Vert, a lion argent”
Now, suppose the registered item is old, and not fully indexed.
Instead of the full indexing we had above, it’s just indexed as
— CAT
We try to search for “CAT:argent”, a correct search
— The system first checks that the category is present

— It then notices that the feature is “argent”, which belongs to the
“tincture” group

Next, it checks that the registered item has a feature in the “tincture”
group — but it doesn’t

— That group isn’t present, so this feature is ignored.

Since the system looks for mismatches, not matches, this returns a
match

Matching

* What this means is that we get a mismatch
only when the system is sure there is no
match

— Otherwise, the system returns a match




Finding Codes

The category and feature codes are
voluminous, and impossible to memorize
They can be found in my.cat

— Ctrl-F is your friend

They can be found using the blazon pattern
search form

— Set “Armory descriptions” to “enabled”

— Search for what you need and read the coding

— REMEMBER: Do not conflict search with this form

1/12/2015

Using the form

The complex form has 10 lines into which
searches can be entered

Each line can be assigned a “weight” and can be
assigned the type of search

— By default, all lines get a weight of “1” and an “armory
description” search type
— These defaults are exactly what we want, do not
change them unless you know what you are doing
Any line where nothing is entered into the
“pattern” box is ignored completely

Using the form

When the search is run, each line is assigned a
value, equal to the “weight” of that line if the
search matches, or O if the search doesn’t
match

Therefore, if we use five lines, and all five lines
match, the score will be 5. If three lines
match, the score will be 3.

10



Using the form

* The goal is to have each line be worth exactly
one DC
— That way, if the line doesn’t match, it means we
have one DC
— If the line matches, it means either that that DC
isn’t present, or that the system couldn’t tell for
sure

1/12/2015

Using the form

* In this way, if the maximum score (number of
lines) is n, we can ignore any results with a score
of n-2 or less — they are guaranteed to have at
least 2 DCs

* Any result with a score of n or n-1 needs to be
hand-checked

— These might be conflicts
— They might be clear but not properly indexed

— They might have DCs for things not easily coded, such
as arrangement

Constructing Search

Identify all charge groups
— Including all details that are worth DCs
* Use one line to code field

— Since only one DC is possible from the field, we
want to use only one line

Use as many lines as possible to code primary

group
— We want to generate as many DCs as possible

11



Constructing Search

* Use one line for each of the other charge
group
— Multiple DCs are possible, so it is tempting to use
multiple lines
— However, removing a charge group entirely is
worth only one DC, so if we use multiple lines and
the group is removed, we’d get too many DCs

1/12/2015

Sample
* Blazon: Per pale azure and gules, a lion and on a
chief indented Or, three escallops gules.
— Field: Per pale azure and gules, plain line
— Primary charge group: lion, 1, Or, rampant
— Secondary charge group: chief, 1, Or, indented line
— Tertiary charge group: escallop, 3, gules, in fess

Sample

* Search

— PPALE:azure:~and gules:pl

— CAT:1:primary

— CAT:or:primary

— CAT:rampant to dexter:primary

— CHIEF:or:jagged:1:secondary

— ESCALLOP:3:gules:tertiary

12



Practice

* Blazon: Per bend argent and Or, a tower and a
chief gules.

 Field: per bend argent and Or, plain line
* Primary charge group: Tower, 1, gules
* Secondary charge group: Chief, 1, gules, plain line

1/12/2015

Practice

* Search:
— PBEND:argent:~and Or:pl
— CASTLE:1:primary
— CASTLE:gules:primary
— CHIEF:gules:pl:unc

Practice

* Blazon: Argent, three axes gules
* Field: Argent

* Primary charge group: Axe, 3, gules, palewise, to
chief, 2 and 1
* No other charges

13



Practice

* Search:
—AR
— AXE:3:g3pa
— AXE:gules:primary

1/12/2015

Split-Type Charge Groups

* When a charge group has two types, they
must be checked separately

* Trying to check in one search will miss
conflicts

* (Note: There is an advanced technique that
can be used to do this in one search, but it is
not covered in this class)

Practice

* Blazon: Per fess Or and argent, a fret couped
purpure and a goutte vert. (or goutte d’huile)

* Field: Per fess Or and argent, plain line

* Primary charge group: Fret, 1, purpure AND
Goutte, 1, vert

14



Practice
* Incorrect search: * Consider: “Per fess Or
— PFESS:pl:or:~and argent and argent, a fret
— FRET:1:primary purpure and a fret
— FRET:purpure:primary vert”
— GOUTE:1:primary * What would the score
— GOUTE:vert:primary be?

1/12/2015

Practice

e Correct search 1:

— PFESS:pl:or:~and argent
— FRET:g2pa
— FRET:purpure:primary

Practice

* Correct search 2:

— PFESS:pl:or:~and argent
— GOUTE:g2pa
— GOUTE:vert:primary

15



Fieldless Badges

* When something is fieldless, it uses the “NO”
code for the field

* Do not use this code

* Simply skip the field, and only check things
that have a maximum score — anything with a

score of n-1 has one DC from search and the
fieldless DC

1/12/2015

Field Primary Armory

* | don’t know of any good way to conflict check
field primary armory this way

* | just go to the Ordinary and check the “Field

only” and “Peripheral only” categories by
hand

Pitfalls

* There is a pair of features “charged” (cha) and
“uncharged” (unc).
— Uncharged is very useful
— Charged should be avoided
* Consider “Or, a lion sable, on a chief gules a sword argent”
* We can code it as:
- OR
— CHIEF:gules:cha
— SWORD:argent:1:tertiary

* What if there is a registered “Or, a lion sable, a chief gules” —
how many DCs will the search show?

* (I will use “charged” when the tertiaries are split-type, and
not code the tertiary group)

16



Pitfalls

* Similarly, primary charges can be alone (spa, gpa, g2pa,
etc.) and not alone (spna, gpna, g4pna, etc.).
— Alone is very useful
— “Not alone” should be avoided
+ Consider “Or, a lion sable between three swords gules”
* We can code it as:
- OR
— CAT:1:spna
— SWORD:gules:3:secondary
* What if there is a registered “Or, a lion sable” — how many DCs will
the search show?

* (Again, I'll use “not alone” with split-type secondary groups and
not code the secondary)

1/12/2015

Summary

* Remember — one line for field, as many as
possible for primary, one per group for other
groups

* For mixed groups, check both

* Avoid uncharged and not alone

Resources

* Article on using the complex form can be
found here:
— http://www.tanzos.net/~victoria/HeraldicEducatio

n/

17


http://www.tanzos.net/~victoria/HeraldicEducation/
http://www.tanzos.net/~victoria/HeraldicEducation/
http://www.tanzos.net/~victoria/HeraldicEducation/

Final Thoughts

* Registerable vs. Authentic

— A submission must be registerable; it need not be
authentic

— While we can encourage clients to design period-
looking armory, we cannot, and should not, force
the decision

— If a client is set on a registerable but not very
authentic submission, you should process it!

1/12/2015

Final Thoughts

* Customer Service

— Itis our job to help our clients

— We are here to make registrations happen, not
prevent them from happening

— When consulting, help clients create registerable
submissions they like

— When commenting, look for reasons to allow
registration, not prohibit it

— Heralds want a reputation for being helpful, not
obstructionist!

About me

* Elmet Herald — | am the East Kingdom heraldic
education deputy

* elmet@eastkingdom.org
* jgalak@gmail.com

* This handout can be found at:
— http://elmet.eastkingdom.org

18


mailto:jgalak@gmail.com

